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o . APPENDIX C

The Structure of Calcium-Free

Human m-Calpain
Implications for Calcium Activation and Function
David Reverter, Hiroyuki Sorimachi, and Wolfram Bode™

The calpains form a growing family of structwrally related intracellular
mulridomain eysteine proreinases coniaining a papain-related cara-
lytic domain, whose acliviry depends on calcium. The celpains are
believed 10 play importan? reles in cytoskeleral remaodeling processes.
cell differentiation, apcprosis and signal mansduction, bur are also
imphcated in muscular dystrophy, cardiac and cerebral ischemia,
plazeler aggregation, re:tenosis, newrodegenerative diseases. thewuma-
(0id arthritis and cataract formazion. The best characrerized calpains,
the ubiguitously expressed p- and m-calpains, are heterodimers con-
sisting of a cammon 30-kDa small and a variable 80-kDa subunit. The
recently determined crustel structures of human and rat m~calpain
crysiallized in the absence of calcium essentially explain the inactivity
of the apaform by catalytic domain disruplion. indicate several sites
where calcium could bind causing reformanion of a papain-like cara-
lytic domain, and add.rionally reveal modes by which phaspholipid
membranes could reduce the calcium requirement, Current evidence
points ta a cooperarive injeraction of several sites, which, upon cal-
cium binding, trigger the refarmation of a papain-similer calalytic
dornain. (Trends Cardiovase Med 2001;11:222-229). © 2001, Elsevier
Science Inc.
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The calpains (E.C 3.4.22..7: Clan CaA.
family €C02) arc generally characterized
as a family of cz]cium-dependent cyto-
sohe cyslcine proteinases with a papain-
resembling catalytic domain. The calpains
scem [o cartalyse the limited pratcolysls
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of prateina invelved in cytoskelotsl re-
modeling, >ignal ransduction. cell cycie
regulanesn, cell differenuiation. apopto-
s13 and necrosis. embryome davelop-
ment and long-term potentiarien 1n the
caniral nervous system (see, e.g., Cara-
foli and Molinari 1998, Ono er al. 1998,
Wang 200Q). Patenrial protein substrates
are cytoskeletal proicins and membmane
prolcins known e control various func-
tional pracesses I responsc to oxtra-
ccllular stimuli. The calpains arc also
implicated, however, in vanous patho-
physiclogical procosses, ingjuding type-
2 diebates mellilus (Horikawa er al.
2000), muscular dystrophy (Richard et
3l. 1999), cataractogencds, inflamma-
tjon, arthritis, and Alzhcimers and Par
kinson$ discascs (Vanderklish and Bahr
2000). Furthermorr. il is now clear that
organ 1schemia, mauma and hemor-
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rhuge con, by increazing the csloum
level, lcad ro ap nenvation of calpain,
which in turn mat trigger the proteoly-
»is of cytoskeletal protrins. cell mem-
brane proteins and repulato;y kinases.
Indeed, §t has born chown experimen-
tally that blockag: af calpain-like pro-
tcolytse activinies with inhibitors can re-
duce njuries of 1he brin (Lee et al
199}, Ram: ana Krieglstein 1993. Wang
et al. 1990, Yokou et al. 1999), the liver
(Kohl et 8) 1997) and the heart (Liznka
et aul. 1992, Mmtsumura =5 sl 1993)

‘cansea by ischemis/reperiugion. In Tecent

wark, McDonald ct al. (2001) show that
inhibinon of cglpan reduces ischemia/
reperfusion injury by prevanting the ex-
pressian of Transcription factor N¥-¢B8-
dependent genes. Seme older Teports
should be considured with some care,
however as mast of the inhtbitors (such
as the calpzin inhibitors 1 and I} ace nes
really cslpain-spedific

The “classic” p- aad m-calpsins ere
the besicharactwerized calpains. They
are heteradimers consisnng of hamela-
gous but distunct (large) L-chains and 3
commaoan (small) S-chaun. On eaposure
10 calcium at concenwations of 5-50 uM
{(w-calprin) and 2011000 M (m-calpain),
both calpains becyme actuve in vitra. In
vive, however. wlerc the calcium con-
centrahions aye in Zeneral far below 1 uM
(Goll et al. 19921, the calpain acnvity
might be additionally regulated by other
mechanisms such as binding of activa-
fors er interacyon wirth phospholipids
(Pontremali et al. 1985, Saide et al
1992). Currendy. 3t least 12 different
calpains have been characrerized in icam-
mals, which are “ubiquitously” (such as
u- and m-calpain) or "ussuc-specifically”
exprezzed (see Table 1). Only a few (such
8x the p- and m-calpams) -arc helerer
dimcrs, while the majenty of calpains
likely consist of an 13olated L-subunit
alonc. Besides thase "typicul” culpains,
which possess \  pe/m-hike l-chan
“atypical” calpams. which, besdes a
papain-related caialytic demain. contain
ather amino- anG earbexy-terminal do-
mains, have been found 1a lawer organe
ism> such a3 nemarades. fungi 2nd
ycast, bus very recondy also in the human/
mammalian genomo (s Serimachy ey
al. 1897). The protcolytic activity of
most of these calpains depends on the
presenee of free caleivm, while o fou
other calpains (snuch as p94: Sarimauch)
<t al. 1989) do n..t seem to require cal-
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Table 1. Family of currently known human calpain genes,
homolpgwes in ather arganisms, the tissues where thoy are expressed,
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T-426 P.30/37 F-348

indicaung the different names used for their products, their
and other impenant eharacteristics

Gene Gene product Homolegves Exprassian Note
CAPN/ wecalpain large subunit (Typical calpain) Ubiquitous

{calpain ])
CAPN2 m-calpain Jarge subunit (Typical calpain)

(calpain =)
CABN3 P94 (nCL-1, calpain 3) (Typical calpain) skeleral muscle LGMD2A*

Lp82 (a.s.p” (Typical calpain) Lens

CAPNS hTRA-3 (RCL-3, calpain 3) TRA-3 (nematode) Testis, bmin
CAPNG Calpain 6 (caipamadulin. TRA-3 (ncroelode) Placenta, cmbryonic No Cys af active sire

CAPNX) muscle
CAPN7 PalBH (calpain 7) PalB (fuag). Cpll (yeast) Ubiquiteus
CAPNS nCL-2 (calpain 8) (Typical calpain) Swomach

nCL-2' (a.i.p.)" Stomach Ca®"-dcpendent
CAPN?S nCL-4 (calpain 9) (Typical calpain) Digestive tracts
CAPNIQ Calpain 104-H Ubiquitous NIDDM*“
CAPNII Calpamn 11 (Typical calpain) Teshs 67% idenuical 10
chicken w/m-calpain

CAPNI2 Calpain 12 {Typical calpain) Follicle
(CAFN13) SALR SOL (Drosaphilz) Vhiguiteus
CAPNSG p~-. m-calpain sroal] subunir (SEF hand protein) Ubiquiteus

" alernative splicing product.
* Lamb giraic inyscle dyswophy s
“Npn-tuaulin-dependent dinbetes mollitus.

cium for their activity. The only known
nawralendogenons inhibitors of scti-
vated calpains are calpasratin {T2kano
et sl, 1995) and the second cystapn da-
main of kininogen (Salvesun et al. 1980).

On the basis of amino acid hamola-
gics. the L- and the S-subunis had been
originally descnibed as cansisting of four
domuins. I o IV, including a papain-like
domain JI. and two demains, V and VI,
respecrively (Im:yeh st 2} 1985, Qhno et
al 1986) The recent cry:=tal structures
of an S-chamn truncaled ral m-~calpain
(Hosficld ct 2l. 1999) and of the full-
length human m-calpain (Soobl er al.
2300), determined at 2.7 and 2.3 A reso-
lunan. respecrively, in the abacnce of
cslcium, have in principlc confirmed the
propesed wulndemain structure (Re-
verter 1 al. 2001). These s.Tuctures have
wllowed us 1o explain tha inacuviey af
apo-calpain via 3 disrupted cawlytc do-
main, have helpad to 1dentify seversl
s1tes Where cslcium could bind, causing
reformanion to = functions) enzyme, and
have given invsluable hinis for site-
directod mutagenesis skpe NMeNts 10 test
thesc hypotheses. Berause of the lack of
calpain syructures delcninined in the
proscnce of calcium. we curvently are
farced to speculate about tae mechanism
of acnvanion and action of calpaina.

TCM Vol. 11, Ne. 6. 2001

- Overall Structure of m-Calpain

The m-calpain molccule forms 3 flat oval
disc. Surprisingly. the catlytic damain
1I, consizning of two subdamains, Ia
{gold) wnd TOb (red), and the calmedulin-
like domain pair dIV-dVI (yellow-orange)
are not in direct contact with cach other
but ars placed at the upper snd the
lawer poles (in the refercnce onentation
used in Figurc 1). Instend, domain III
(bluc) and the amino-terminal domains
I (green) 3and V (magenta) connect rhe
two calmodulin-like domains with both
catalytic subdomains. p-calpam, which
has andeatical S-chain and shares wish
m-calpain 8 B1% sequence similapny
i the L-chain. should have a similar
appea‘ran:s.

The L.chain (see Figure 1) swarts with
an “anchoring hehx” (dl) in & surface
cavity of deomain VI snd confinues
straighe 1o rhe “halica) subdemain™ 1la.
clamping both domains together At
Gly}SL (jnature human m-calpain nuam-
bening, with suffixes L and S :ndicating
residuas of the large and small subunit,
Figure 2), the Lchain joins the catalync
domain, where if forms an euter polar
surfuce shell. before (from Thr93L en-
ward) 1t folds into the papamn-like corc.
This catalytic domain is broken into two

09/26/02

separate subdairains, with cach signaifi-
canutly differing 1a tengrh and conforma-
tion fram the cyuivalent halves in ps-
pain (Kamphui> ct al. 1984). At the
Gly209L-Gly210l. “hinge.” ths L-chain
passes over 19 rhe “barrel-like subdo-
main” IIbh, foriging the typical sia-
srrandzd B-pleated shect rolled inte an
open barre! and flanked by three addi-
nienal helices. Duspite this barrel having
a similar shape s 1n papain, two of the
lopps are quite exrended. Imporancly,
the substrare-binding cleft of apa-caipain
is parted te form a widc gap and ik
Cy51QSL-His262L-Asn2B6L acuve-site
trind is disruptesd. which is incompanble
with praductive binding and cleavage of
peptide zubatrates (Figure 3).

The L-chain then turns through an
open loop before forming the central do-
main I (Figur: 1), with this demaln
copsisting essunnally of two oppesing
foprstranded antiparallel B-theets and
exhbiting the restiary fold of n compact
B-sundwich. Its tapelogy faintdy resem-
bles char of so-called €2 domains that
sre known 1o oczurn a large variety af
protcins invelved in intmcellular signal-
ing (like phosplialipasze A2, phosphahl-
pase C, and protein kinase C) and mem-
branc trafficking (like synaptotagmin:
for reviews see, e.g.. Rizo and Sudhoff

224
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Calrmedulin-like ‘
domains

Caralytis subdomaigs

Fignre 1. Ribban structure of the apeferm of human m-calpain, shown in reference ariansas
ton (Stropl et al. 2000). The 80-kDa L-chain asarts In the molccalar censer (green, A1), folds
,nie she aurtaec of subdoman s {gald, T hinker), forms the helical (gold, d11a) and cthe
baersi-like (red) subdomains I3 ond ITh. descends through the opcn I-UI laop (red). builda
domamn 1T (biue), juns down 1magenta. JI-IV) and forms the right-gide calmodulin-like do-

mamn

IV (ysliow). The 30-kDa S<hain becomes vizibls from The95S onward (mugent3, dV) be-

fare forming the catmodulin domamn VI {orange). The catalync residues Cysi0ST, Hi.202L,
and Asp28sL togsther with Trp288L (sop) azc shown with all non-hydrogen atoms. The figure
wag moade with MOLSCRIPT (Firaalis 1991) and Raster3D (Mcrric and Bacon 1897).

1998). With respecr to the detailed order
and comncenvity of the c.ght strands,
the calpsin domzin ITI differs from
these €2 damains, but1s similar to sach
of the three subunirs of to:noT necrosia
factor-a (Strebl o1 ul. 2000). Particularly
renmyarkable in the m-calpain domain 11
the solvept-exposed “aeidic “laap.”
which carries 10 acidic residues within
jts 1l-residus Glu392L-Glu402L sep-
ment (Figures } and 2). This loop 15 >pa-
tially adjacent ro >ubdomain IIb and
certainly inicracts electros-atically with
the many positive chargss of this subdo-
main jurface.

Aftcr Jeaving domain 1, the L-chain
runs alongside the calmosiulin-hike do-

=

234

main IV in an sxiended conformation,
presenviag Two clusters of acidic side
chains roward the solvens ({1J-IV, Figore
1). Ar NeS30L, the L-chwin enters the
calmodulin-like domain IV. and, as had
already been shown for the isolatcd
(homodimeric) domains VI of rat and
poraine m~alpain (Blanchard st al. 1997,
Lin of sl 1997). thix domaan IV re-
sembles other cplcigm-binding BF-hand
proteins (Kretsinger 1996). It consists
of cight e-helices connected thraugh
charactenstic hakers, forming five EF-
hand supersecondary strueryral elements
l1ta5.

The amine-terminal part of the
m-calpnin S-chain (Fipure 1), rich in

09/26/02 THU 16:09
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glycine residues, is in human full-length
m-calpain represynted by clsar elec-
tron density from Thr8SS anward, bur
may be arranged on the front side of
m-cajpam. The vis:ble part of domain V
runs to the molecular penphery, where
it onrers the sscand calmedulin-like
domyn VI Thi~ demam, similatly
equipped with five patennial EF-hand
motlbs, together with domain 1V forms
s quesi-symmemncal heterodimar. A lo-
polagical comparisen shows that the
human m-calpain dIV-adVI heterod)ymer
determined in the absence of caleium
exhibits an architecture simular to that
of the dVI-dVI lLoemodimer from rat
m-calpain (Blanchard et al. 1997), in 113
calcium-free as well as In 115 &sleivm-
laden fprm.

« Probable Struciure of the Intacy
Catalytic Domain

as mentioned abuve, the catalyuc do-
main of calcium-free cslpsin s dis-
rupted. The overall homoiogy with pa-
pain strongly suggssts that both cadpain
subdamans [Ia and ITh possess the in-
herent tendgncy 10 fuse 1A10 4 papain-
like catalyric domsin by opumizing the
inwcr-dormain conilacts, but are hindered
in doing so in the abscnce of zalaium, A
conformation simar wo the catzlyuc do-
mam of papain can bc achieved by ro-

_tating and shifting the barrci-hke subdo-

main b sgainst the hehcal subdomain
Is by more than S0° and 10A. respec-
uvely (Figure 3). Afer a few rearrange-
menta in the ipgerface. the His262L
imidazole side chain would be located
besjde Cys105L. and us hydrogen bond
1o Asn286L would becomc shislded
from bulk water hy the Typ283L indole
moiety. as is known for all active papamn-
like proteinases. Aa in papain, the dipole
mowmeant of the anchoring hzlix may sra-
bilize the Cys105). thiolale-His262L 1m-
idazolium capon. and the Gln99 cav—
bexamide mitegun tagether With the
Cys105L amide nitrogen could form
the oxyunion hole

In thiz fused catslytic deoman, the
functional acnve-aire cleft could accom-
modate 2 suscepiibla poptide substrare,
and as in papain camplexcs. the P2
main cha:;n [acsarding to the Schechter
snd Berger (1967) nomenclature, with
Pl, P2, etc. and P1'. P2'. aic. defining
substrate re>idues amino- and carbaxy-
terminally from the smissile pepude

TCM Var 11 No. b, 2881
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Figure 2. Scquenecs of the 8(-kDa L- »nd the 30-kDa S<hamn of human m-calpain (Imajoh atal 1988, Ohno ct al. 19h6). B-Stweands and a-Relices
are «nd,cated by arrows and cuiinders active-site residucs and other potable residuas (811a and dIIb) arc marked by imangles, acidic rofiducs of
the g—itch loop (dIII) and opposing alkaline residues (dIIb and II-I1). and the rosiducs of damsin VI known to be 1avolved In normsal calcium
binding {Blanchard cral- 1957, Lin cc al. 1997) by black circlea. The figurc was made with ALSCRIPT (Bzrion 1953)

bond, and S1, S2, ete. ane. S1°. $2°, 81e.
indicating the opposing subsites] should
farm 2 shorl antiparalle] B-shect with
the enzyme, so that the (oplimally Ley-,
Val-, or Jle-like: Wang 2000) P2 side
chain could slot into the rclatively hy-
draphobic S2 depression. Conscquently.
the side chains of the P1, P1’. and P2’
residucs wauld project out of the clefr
runmng alongside the polar (S1) and
pasitively charged rim (S2°) of subdo-
main [Ia, and the polar rim of sub-
domain 1Ib (S1°), respecr.ively Further
outside the cleft, several negutively
chuyrged side chains provided hy both
subdomains (increasing in number from
»- 1@ m-calpain) would coms into close
contacy with each other upon subdo-
main fusian (sce Figure 3). [t i> tempnng
te spcculate that without charge cam-

7€M Vol. 11, No. 6, 2004

pensation both charged subdomains
could repel each other prevepnnng fu-
sion. Calcium binding To any of these
negsrtively charged sites may facilitsie or
even wigger subdomain fusion (Srrob) e3
al. 2000). Such (hypothctical) calcinm
binding swes in the cauwalytic subdo-
mans could cxplain the calcium sensi-
Hvity observed for the alterparively
spliced nCL-2' (Tahle 1). that ix. of 8
calpain species essenrially consisting of
the catalync domain alone (Senmachi
ct 8). 1993). Based on »cquence align-
ment and caleium binding »tudicas slone,
the His319L-FPhal3 )L segment had pre-
viously been predicred as a “sixth”
calpain EF-hand monf in domain III of
convantional calpains (Andresen ct al.
1991) However, the currenr smuctare
reveals this helix-leop-strand-helix mo-

09/26/02

tive a5 a pan of the calalytic ~-ubdomam
IIb und differs from the typica)l EF-hand
folds (Figures 1-3).

* Possible Effecis Upon
Calciom Bindigg vo the
Calmodulin-ILike Domains

In a similar faslion 10 the rat dV1.dvl
hemadimer (Blanchard er al. 1997, Lin
er al. 1997). the JIV-dVI hereradimer of
hum>n m-calpaun sheould ot fundamen-
rally change its everall structure upen
calcium binding o EF-hands }, 2. and 3
(and BF-4 a1 hugner calcium coneenwus-
rions)  Mere sign ficant should be the re-
folding of tha linkers jnvojved in the
thres ealcium-binding EF-hand monfs,
allowing the acidie residuc mide chains
involved to coordinate the hound eal-

225
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Figurs 3. Supsrposinon of the ajarupted subdomalins Na and 1ib of ape-m-calpain (aila and
aralyne doman (41p’, davk srey), Both helieal
jubdomaina supermpose {al¥a). while the barrci-ike subdomain TId has been arrunged shiny-
Inr to papain (d11b7) The netive apte residucs Cys105L. His2621. snd Asn2fol, a> well as
Tep208L are shown n Full «n she atructurg, TRI5 “aiundard View” of PAPAIR-IKE Cya€nic pro-
1eynases 15 optaned fram Fogerc 1 by 2 90° ray3non arewnd a horizents! sxia. The figure was
made with MOLSCRIPT (Kraal.s 1991) and Raswr3D (Morns and Bocon 1697).

JITh. pale grey) with the probakle Funcrionzl ¢

cjum iens There 1s. however, no indica-
tion for 3 considerable exposure of new
hydraphobic surfaces, se that demains
IV and VI would appear 1o play 8 "slue-
tura)” rather than a “regularory” role in
the conventienal calpains.

Recent mutabonal srudies on the EF-
hsnd of rar m-calpain (Dun er al. 2000)
hsve shown that the importance af the
EF-hand integrity for calcium acrivasion
varies. No single calcium binding site s
absolurely required for ealzjumn acriva-
tion, and even an m-calpain spacies with
all EF-hands mutited can be activared
at higher calequm levels. The dissociation
of the S- fram the catalytic L-subunit of
conventional human and rsbbit calpwin
on expasurc to calaum hss been ob-
served in scveral Inborutores (Michetti
<1 s]. 1597, Suzuki and Sopmachi 1998,
Viler ct al. 1997) bur has been ques-
tioned by others (Blez et al. 1997). If
correct, thi> observation would suggest
3 weakened tnicraction of both subunirs
upon calcum binding. The m-calpain
L-subunit alonc has besa shown te be
tully active (Wlei et al, 1857), 0 thar the
S-subunjt seems te have 2 chaperone-
hke fuacuon fur proper folding of the
L-subunuft.

Because of the presence of Aspl54S
in the EF2-hand, calcium binding to do-
main VI would durupt the Iys7L-Aspl54S

2z

salt bridge and thus the interaction be-
tween the anchoring helix of the L-chain
and the czlmodubn-like domain VI,
which woald facilitate the releass of the
anchering helix from its yntegrated orig-
inal posivion (Figure 1). Consequently.
this helix could adapt more easily ta the
sybsirate-binding sites of atzacking pre-
teinases or might cven spontancously
unfold. allowing a rapid autalynic cleav-
age in helix dl (Suzuki and Sorimachi
1698). as Frequently abserved upon cal-
cium activation. Such a release and irve-
versible runration of the amine-terminal
helix might mechanically relfeve rension
barween domain VI and subdomain Ila,
Eacilitatuing the latters approach to sub-
domain ITb and the subseguent forma-
tion of a Ffunctional catalytic domain.
Such a meechanism would be in sgree-
ment with the observed lower calcium re-
quirement of autolyzed - and m-calpun
(Suzuki et al. 1995).

» Possible Conformational Effects on
Calcium Binding to Domain 11

Qwing to irs central position. domain II1
may play a maojaor yole in the caleium-
promated activanion of calpain (Hosficld

et al. 1999, Swobl a1 a]. 2000). Of partic-.

ular inferest 15 its surface-located cx-
remely acidic faap. whose 10 negately
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charged mdc chains extend away from
cuch other in apo-ri.calpain. because of
strong electrostatic ropulsion (Figurs 1).
This loep dircetly canfacts an amphi-
pathic hehx and 1be II-1I1 connecung
lpop of subdomain JIb. which prowide 2
number af basnc (Lys) side chains (sec
Figurce 2). Thesc acidic and basie resi-
dues, as well as the cerresponding nega-
tive and pesltive elcewrpsialic potentials
on both appesing (iub)demuin surfaces.
will certainly give risc te mutual atrac-
tion of subdomain [Ib ard domain HI
Disruptien of thir clectrostanc aruacr
con should farlin.xe the fusion of sub-
domain IIb with subdomain 1la (Figure
4). In p-calpain, with "enly” eight nega-
uve charges distnbured over i shghtly
longer loop scgment, This chargs rvpul-
sion should bc slightly weaker, render
ing elecostatic lisruption rasier. In-
deed. 1t has been shown recently for rat
m-calpain (Hosfield er al. 2001) that
charge removal o: 1nversion of ane ar
the ather charged residue 1a this iptcr-
domain region leas to an increased cal-
cium sepsiuvity o) the refulung calpain
vanants, indicaung the impoarfance of
vhis electrastane 11h-UI conract for the
wansmission of tnggering signals.

In our atructural paper (Strobl e al.
2000), we furthermore spcculsted that
pasitively charged parncles such as cal-
cium ions could bind to this acidic loop
ander (partial) charge cumpensalion.
Calejum binding could not only give Tise
o a moare compact fold ot this loop, but
wonld also reduce s swongly ncganve
petenual and thus the clectrostatic in-
tcracion with subdomain IIb. Such =
calcium-induced Jisruption of the clec-
trostatic interaction would allow subda-
main IIb 1o rotate over to subdomauin Ila
and 1o fuse. under formation of a fune-
nonal catalytic dumain (Figure 4). The
hydrophobic interacnions between sub-
demain IIb and domain III would -
cilitare such a volling motion of subdo-
main IIb. while subdemain Iz, clamped
through many polar coniacts, would re-
main rigidly erienied with respect ta do-
main I (Fgure 4).

Such an “elecmostauc switch mecha-
nizsm” (Strobl ¢t al. 20Q0) would also ac-
count for tho differcnccs in calcium acri-
vanion of u- and m-~calpaun; m-zalpain
pessessing the larger aumber of acidic
residues in the acidic loop might coordi-
nats mere calciuie ons thun k-calpain
Becanse af the sgonger charge repul-
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Figure 3. Schemate represencation of the hy
ias Each m-calpain domain is repreacnted by a sp
nridge Witl be disrupted, SWVIng f1s¢ (o o hiberation o
bind to the nagative charges cn beth sides of the ative-site cleft,
additlan the acidic Joop may fold around the calcium wons hberati
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pothercal calpain activalien pracess on axpeaurs to cultium and In the presence of phospholip-
hare arranged 35 1n Figure 1. Upen calcaum binding o demain VI, the Lys 71-Asp 1348 salc,
£ the N-terminal domain al and refieving any tension botween d1U and dIIb. Calcium could
faclljtaring vr even miggering subdamain fusion. Furthermare, upon calcluta
ng the (moblla) aubdomain Ik to form & funciiv-nal catalytie demain with

subdomalin [T Sucn a 4116 aavement is Facilitated becausc of she hydrophabic bas« of 411]. Compicle formation of Iie calcium coordinauen
opheres of demain T may rejuire additional hgands which are provided by the negsrively chargsd paosphaudyl head groups of acidic phes-

phohipids (PL)

sion of the more densely picked calcium
ions, Full charge compensation in the
m-calpain acidic lonp might require higher
calcium concentrations. Tt 1> known that
acidic phaspholipids greatly reduce the
calcium concentratien necesyary for cal-
cwum sctivation (Saide er al. 1992). The
occuparion of the caleium coordination
spheres by acidic loop residucs may re-
main incomplete, giving .ise to the at-
traction of additiona) ligands such as
oxygen from nsganvely charged phas-
phandyl groups of membranous phasphe-
lipids (Strobl ey al. 2000). Very recently,
Tompa ct 3l. (200]) were able 10 show
that the i1solated domain III of rat -
and m- calpaia binds calcium: and that
the amount of bound calcium increases
conaiderably in The presence of di- and
triphosphoinasitides-can -aimng  hiso-
somes In the cell, the calcium 1ons
night targer and link the m-calpain
molecules via domain 111 .o specific cel-
Jular membranes.

A similar electrortatic zuntch mecha-
nism, with a calcium-regulatad ap-
proash of neganvely charged target pro-
teins and phaspholipid mimbranes, had

TCM Vol. 11. No. 6, 200]

been postulated for the C2-carrying syn-
aprotagmin I invelved in synaptic vesi-
cle exocyiosis (Rize and Sudhoft 1998).
Calcium-mediated bridging between
a two-calcium-binding €2 domain of
protein kinase Co and a phosphatdyl-
serinc molecule has recensly been dem-
onstrated crystallographically (Verdaguer
et al. 1999).

v ‘Canclusions

Figure 4 shows schematically the po-
tential calcium binding sites and pos-
sible calcium-promoted conformaronal
changes. which may reault in the forma-
uon of 3 funcrional and acuve catalytic
damain. Calcium binding to the EP-
hands of both calmeduhin-like dominns
will presumably promaic autolysis of
the dI-hebx and passbly ease the fusion
of both catalytic subdomains. but zshould
only "madulare” the overall (in)stability
of the ealpaun molecule and calawwm
sensstivity of mecalpain, which is
agreament wirh the long distance from
the catalytic subdomain: s and [Ib and

with reccent murational sxperiments

(Durr et al. 2009). Calcium binding to
the mulnple negarive charges around
the yeformed aciive-site cleft, including
the acidic residues in the former “sixth
EF-hand” region. should further conrib-
ute 1o swabilization of the active calpain
conformarien. Kecent mutatecal cvi-
dence (Hasfield ¢t al. 2001) uademcores
the 1mparance of the electrestalic (nter
actions bsrween the acidic iip arca of
domain 111 and tne apposing slkaline re-
gion for transmissien of the calcium-
mdyced riggering signal toward the
caralyuc domain. This domain {ll. vis
ns acidic Joop. could be acuvely in-
volved in this triggering event (Hosfield
et a}. 2001, Revester et al. 2001, Strobl of
al 2000. Tompa 27al. 2001). In addiuon,
it could mediaiz calpains inlcracnon
with phoipholip:d mombrancs. increase
its calcaum sensitivity and direct the
calpain moleculr rowsrd cyloplasmic
and nuclear membranes. All the current
data seem o suggest thar in the conven-
tionsl calpains the proteonlytic uctviry 1s
not regulated vin a single swich, bur
that several gites coaperate in modulat-
1ng, the overall edcium respoensc.

237
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Inherited Sodium Channelopathies:
Novel Therapeutic and Proarrhythmic
Molecular Mechanisms

Jaffrey R. Balser*

Voltage-gated sadium (Na) channels, ransmembrane proieins that pro-
duce the ionic current responsible for the rapid upsiroke of the cardiar
action potential, are key elements required for rapid conduction through
the myocardium and maintenance of the cardiac rhythm. The exquisite
senswtivity of the cardiac rhythm ta Na channel funciion is manifest in
the proarrhythmic camplications of "antiarrhythmic” Na channel block-
ade in palients with myocardial ischemia. Mare recently, studies af
inherited single amino acid substiturions in Na channels have unvailed
a remarkable array of vardiac vhythm disturbances, as well as surprising
pharmacologic sensitivities. Hence, the sodium channeloparhies ure
providing new molecular insights into mechanisms whereby altered ion
channel behavior precipitates cardiac arrhythmias, (Trends Cardiovasc
Med 2001:11:229-237). © 2001, Elsevier Science Inc.

Inherived mutations In SCNSA. the gene
encoding the human cardiac sodiym
(Na) chsnncl, have besn assaciated with
varicd diserders of cardiac thythm thas
range from rapid, life-threatcning tach-
yarrhythmias 1o bradyarvhythmias that
require pacomaker implantation (Figure
1) {Schartx =t al. 1895 Wang «t al. 1995).
Na channcle undergo rapid structural
realrsngemenis on a sub-millisecond
time 3calc in gosponse o the changing
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ransmembrane elecrrical field, through
a process known as “gating” (Hodgkin
and Huxley 19521 Whereas studics ars
hnking the Na channel gating progeases
to particular smctural elements, anti-
arrhythmic drug binding to cardiac Na
channcls hinges criically upen iransi-
uens among gated sonformanianal srates
{Hille 1977, Hordeghem and Katzung
1577). It follows narturally that inherited
Na channe] muiations thar provoke ear
diac arrhythmias and gating dysfunc-
tion aloa scem 1o madify the clinica] re-
spansc to antiatvhythmic drug therspy
(Fuyiki <1 al. 1999, Schwartz et al. 1995)
Will the emergi:g Na channelopathies
serve as useful maolecular models to wn-
derstand Bow derangemsnts in won chan-
ns} srrucpure and Runcrion clier more
commion, acqui.red rhyrhm disorders,
such as those sevn with caronary occlu-
sian and structuy al heart discaae? Morc-
over, @ao the inheriied Na channelopa-
thies pravide a incehanistic framework
for wndcrstanding uwnunpeipatsd pro-
arthythmic Tesponses 7o aniiagrhyth-
mic drug therapy?

« "Gajin-of-Funcrion” Garing
Dyskyucrion: the Long
QT Syandrume

As the myocardium is simulated or “de-
polarzcd,” the Na channels normally
apen only briefly (~1 msec), and then
“fast jnactivate” as the cardiac acuen
potennal cnsues. producing 2 large in-
ward cucrent that rapidly eatinguishes
(Figure 2A). Muiatians 1a the cardiac Na
channe! linked o an aulosemal domi-
pnant form of 1he long QT syndrome
("1QT3," Figure ). Wang &t a]. 1995) dis-
Fupr fest inacuvanon (Rennetr o1 31. 1995,
Pumasine o1 al. 1996. Wany er a). 1996)
and thercby allow sustmiped chsnnel
opening. This cvokes a small. persisfent
Nu current during the action patentis|
plateau (Figurc 2A) thar delays myocyte
repolarization. ovokes electrocardio-
grephic (ECG) QT interval prolangalian.
and predisposes palicnts to pelymor
phic ventricular tachycardis (“torsade
dc poinics”). Surpnsingly. the magni-
wde of this paihelogic plstcau current
is minute (~0.5-2%) compared to the
latge "peak” Na current that develops
immedijarely upon depolarizauon (Du-
maine et sl 1846 Wang ct ul. 1996, Wei
st al. 1999) Th: formidablc role of this
amal) "gain-of-function” defect in Nu
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